
MySQL Internationalization and
Localization



MySQL Internationalization and Localization
Abstract

This is the MySQL Internationalization and Localization extract from the MySQL 5.0 Reference Manual.

Document generated on: 2009-06-02 (revision: 15165)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/5.0/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc




Internationalization and Localization
This chapter covers issues of internationalization (MySQL's capabilities for adapting to local use) and localization (selecting partic-
ular local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

iv



Chapter 1. Character Set Support
MySQL includes character set support that enables you to store data using a variety of character sets and perform comparisons ac-
cording to a variety of collations. You can specify character sets at the server, database, table, and column level. MySQL supports
the use of character sets for the MyISAM, MEMORY, NDBCLUSTER, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment

• Syntax for specifying character sets and collations

• Affected functions and operations

• Unicode support

• The character sets and collations that are available, with notes

Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you
want the client program to communicate with the server using a character set different from the default, you'll need to indicate
which one. For example, to use the utf8 Unicode character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related issues in client/server commu-
nication, see Section 1.5, “Configuring the Character Set and Collation for Applications”, and Section 1.4, “Connection Character
Sets and Collations”.

1.1. Character Sets and Collations in General
A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in a character set. Let's
make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A” = 0, “B” = 1, “a” = 2,
“b” = 3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the combination of all four letters and their encod-
ings is a character set.

Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look at the encodings: 0 for “A”
and 1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What we've just done is apply a collation to our character set.
The collation is a set of rules (only one rule in this case): “compare the encodings.” We call this simplest of all possible collations a
binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have at least two rules: (1) treat
the lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then compare the encodings. We call this a case-insensitive col-
lation. It is a little more complex than a binary collation.

In real life, most character sets have many characters: not just “A” and “B” but whole alphabets, sometimes multiple alphabets or
eastern writing systems with thousands of characters, along with many special symbols and punctuation marks. Also in real life,
most collations have many rules, not just for whether to distinguish lettercase, but also for whether to distinguish accents (an
“accent” is a mark attached to a character as in German “Ã#”), and for multiple-character mappings (such as the rule that “Ã#” =
“OE” in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets

• Compare strings using a variety of collations

• Mix strings with different character sets or collations in the same server, the same database, or even the same table

• Allow specification of character set and collation at any level

In these respects, MySQL is far ahead of most other database management systems. However, to use these features effectively, you

1



need to know what character sets and collations are available, how to change the defaults, and how they affect the behavior of
string operators and functions.

1.2. Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets, use the SHOW CHARACTER SET state-
ment. A partial listing follows. For more complete information, see Section 1.12, “Character Sets and Collations That MySQL Sup-
ports”.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci | 2 |
| dec8 | DEC West European | dec8_swedish_ci | 1 |
| cp850 | DOS West European | cp850_general_ci | 1 |
| hp8 | HP West European | hp8_english_ci | 1 |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci | 1 |
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| swe7 | 7bit Swedish | swe7_swedish_ci | 1 |
| ascii | US ASCII | ascii_general_ci | 1 |
| ujis | EUC-JP Japanese | ujis_japanese_ci | 3 |
| sjis | Shift-JIS Japanese | sjis_japanese_ci | 2 |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci | 1 |
| tis620 | TIS620 Thai | tis620_thai_ci | 1 |
| euckr | EUC-KR Korean | euckr_korean_ci | 2 |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci | 1 |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci | 2 |
| greek | ISO 8859-7 Greek | greek_general_ci | 1 |
| cp1250 | Windows Central European | cp1250_general_ci | 1 |
| gbk | GBK Simplified Chinese | gbk_chinese_ci | 2 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
...

Any given character set always has at least one collation. It may have several collations. To list the collations for a character set,
use the SHOW COLLATION statement. For example, to see the collations for the latin1 (cp1252 West European) character set,
use this statement to find those collation names that begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 1 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |
| latin1_bin | latin1 | 47 | | Yes | 1 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+---------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation for latin1 is lat-
in1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation is the default for each displayed char-
acter set.

Character Set Support

2

http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html


• There is a convention for collation names: They start with the name of the character set with which they are associated, they
usually include a language name, and they end with _ci (case insensitive), _cs (case sensitive), or _bin (binary).

In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application.
To avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure
that a given collation sorts values the way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

1.3. Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table, and column. The description in the
following sections may appear complex, but it has been found in practice that multiple-level defaulting leads to natural and obvious
results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and the MySQL server. If you
want the client program to communicate with the server using a character set different from the default, you'll need to indicate
which one. For example, to use the utf8 Unicode character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Section 1.4, “Connection Character
Sets and Collations”.

1.3.1. Server Character Set and Collation
MySQL Server has a server character set and a server collation. These can be set at server startup on the command line or in an op-
tion file and changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start mysqld. You can use -
-character-set-server for the character set. Along with it, you can add --collation-server for the collation. If you
don't specify a character set, that is the same as saying --character-set-server=latin1. If you specify only a character
set (for example, latin1) but not a collation, that is the same as saying --character-set-server=latin1 -
-collation-server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1. There-
fore, the following three commands all have the same effect:

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \

--collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server character set and collation when build-
ing from sources, use: --with-charset and --with-collation as arguments for configure. For example:

shell> ./configure --with-charset=latin1

Or:

shell> ./configure --with-charset=latin1 \
--with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If not, each program displays an error
message and terminates.

The server character set and collation are used as default values if the database character set and collation are not specified in CRE-
ATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the character_set_server and colla-
tion_server system variables. These variables can be changed at runtime.

1.3.2. Database Character Set and Collation
Every database has a database character set and a database collation. The CREATE DATABASE and ALTER DATABASE state-
ments have optional clauses for specifying the database character set and collation:

CREATE DATABASE db_name

Character Set Support

3

http://www.collation-charts.org/
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-charset
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-collation
http://dev.mysql.com/doc/refman/5.0/en/create-database.html
http://dev.mysql.com/doc/refman/5.0/en/create-database.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.0/en/create-database.html
http://dev.mysql.com/doc/refman/5.0/en/alter-database.html


[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character sets and collations on
the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used. To see the default
collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.

• Otherwise, the server character set and server collation are used.

The database character set and collation are used as default values for table definitions if the table character set and collation are
not specified in CREATE TABLE statements. The database character set also is used by LOAD DATA INFILE. The character set
and collation have no other purposes.

The character set and collation for the default database can be determined from the values of the character_set_database
and collation_database system variables. The server sets these variables whenever the default database changes. If there is
no default database, the variables have the same value as the corresponding server-level system variables, charac-
ter_set_server and collation_server.

1.3.3. Table Character Set and Collation
Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE statements have optional
clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
[[DEFAULT] CHARACTER SET charset_name]
[COLLATE collation_name]]

ALTER TABLE tbl_name
[[DEFAULT] CHARACTER SET charset_name]
[COLLATE collation_name]

Example:

CREATE TABLE t1 ( ... )
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used. To see the default
collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.

• Otherwise, the database character set and collation are used.

The table character set and collation are used as default values for column definitions if the column character set and collation are
not specified in individual column definitions. The table character set and collation are MySQL extensions; there are no such things
in standard SQL.

Character Set Support

4

http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/create-table.html
http://dev.mysql.com/doc/refman/5.0/en/load-data.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.0/en/create-table.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html


1.3.4. Column Character Set and Collation
Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character set and a column collation.
Column definition syntax for CREATE TABLE and ALTER TABLE has optional clauses for specifying the column character set
and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
[CHARACTER SET charset_name]
[COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
[CHARACTER SET charset_name]
[COLLATE collation_name]

Examples:

CREATE TABLE t1
(

col1 VARCHAR(5)
CHARACTER SET latin1
COLLATE latin1_german1_ci

);
ALTER TABLE t1 MODIFY

col1 VARCHAR(5)
CHARACTER SET latin1
COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

CREATE TABLE t1
(

col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has character set utf8 and collation
utf8_unicode_ci.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used.

CREATE TABLE t1
(

col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set utf8 and the default colla-
tion for utf8, which is utf8_general_ci. To see the default collation for each character set, use the SHOW COLLATION
statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y are used.

CREATE TABLE t1
(

col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation utf8_polish_ci and the
character set is the one associated with the collation, which is utf8.

• Otherwise, the table character set and collation are used.

CREATE TABLE t1
(

col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation are specified for the column, so the table defaults are used. The column has character set
latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

Character Set Support

5

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/create-table.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/enum.html
http://dev.mysql.com/doc/refman/5.0/en/set.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html


If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map the data values, but if
the character sets are incompatible, there may be data loss.

1.3.5. Character String Literal Character Set and Collation
Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by the charac-
ter_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is about to follow uses char-
acter set X.” Because this has confused people in the past, we emphasize that an introducer does not change the string to the intro-
ducer character set like CONVERT() would do. It does not change the string's value, although padding may occur. The introducer
is just a signal. An introducer is also legal before standard hex literal and numeric hex literal notation (x'literal' and
0xnnnn), or before bit-field literal notation (b'literal' and 0bnnnn).

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 b'1100011';
SELECT _latin1 0b1100011;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y are specified, character set X and collation Y are used.

• If _X is specified but COLLATE is not specified, character set X and its default collation are used. To see the default collation
for each character set, use the SHOW COLLATION statement.

• Otherwise, the character set and collation given by the character_set_connection and collation_connection
system variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'MÃ¼ller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'MÃ¼ller';

• A string with the connection default character set and collation:

SELECT 'MÃ¼ller';

Character set introducers and the COLLATE clause are implemented according to standard SQL specifications.

An introducer indicates the character set for the following string, but does not change now how the parser performs escape pro-
cessing within the string. Escapes are always interpreted by the parser according to the character set given by charac-
ter_set_connection.

The following examples show that escape processing occurs using character_set_connection even in the presence of an
introducer. The examples use SET NAMES (which changes character_set_connection, as discussed in Section 1.4,
“Connection Character Sets and Collations”), and display the resulting strings using the HEX() function so that the exact string

Character Set Support

6

http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_convert
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_hex


contents can be seen.

Example 1:

mysql> SET NAMES latin1;
Query OK, 0 rows affected (0.01 sec)
mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)

Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence is interpreted using the
character_set_connection value of latin1 to produce a literal newline (hex value 0A). This happens even for the
second string. That is, the introducer of _sjis does not affect the parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)

Here, character_set_connection is sjis, a character set in which the sequence of “à” followed by “\” (hex values 05
and 5C) is a valid multi-byte character. Hence, the first two bytes of the string are interpreted as a single sjis character, and the
“\” is not interpreted as an escape character. The following “n” (hex value 6E) is not interpreted as part of an escape sequence.
This is true even for the second string; the introducer of _latin1 does not affect escape processing.

1.3.6. National Character Set
Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use some predefined charac-
ter set. MySQL 5.0 uses utf8 as this predefined character set. For example, these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.0 from versions prior to 4.1, see the MySQL 3.23, 4.0, 4.1 Reference
Manual.

1.3.7. Examples of Character Set and Collation Assignment
The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition is explicit, so that is
straightforward. Notice that there is no problem with storing a latin1 column in a latin2 table.

Character Set Support

7

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html


Example 2: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem natural, the default colla-
tion is not taken from the table level. Instead, because the default collation for latin1 is always latin1_swedish_ci,
column c1 has a collation of latin1_swedish_ci (not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks the table level to de-
termine the column character set and collation. Consequently, the character set for column c1 is latin1 and its collation is lat-
in1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;

USE d1;
CREATE TABLE t1
(

c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character set and a collation at the
table level. In this circumstance, MySQL checks the database level to determine the table settings, which thereafter become the
column settings.) Consequently, the character set for column c1 is latin2 and its collation is latin2_czech_ci.

1.3.8. Compatibility with Other DBMSs
For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

1.4. Connection Character Sets and Collations
Several character set and collation system variables relate to a client's interaction with the server. Some of these have been men-
tioned in earlier sections:

• The server character set and collation can be determined from the values of the character_set_server and colla-
tion_server system variables.

• The character set and collation of the default database can be determined from the values of the charac-
ter_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the connection between a client and the
server. Every client has connection-related character set and collation system variables.

Consider what a “connection” is: It is what you make when you connect to the server. The client sends SQL statements, such as
queries, over the connection to the server. The server sends responses, such as result sets, over the connection back to the client.
This leads to several questions about character set and collation handling for client connections, each of which can be answered in
terms of system variables:

• What character set is the statement in when it leaves the client?

The server takes the character_set_client system variable to be the character set in which statements are sent by the
client.

• What character set should the server translate a statement to after receiving it?

Character Set Support

8

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_server
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_client


For this, the server uses the character_set_connection and collation_connection system variables. It converts
statements sent by the client from character_set_client to character_set_connection (except for string liter-
als that have an introducer such as _latin1 or _utf8). collation_connection is important for comparisons of literal
strings. For comparisons of strings with column values, collation_connection does not matter because columns have
their own collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back to the client?

The character_set_results system variable indicates the character set in which the server returns query results to the
client. This includes result data such as column values, and result metadata such as column names.

You can fine-tune the settings for these variables, or you can depend on the defaults (in which case, you can skip the rest of this
section). If you do not use the defaults, you must change the character settings for each connection to the server.

There are two statements that affect the connection character sets:

SET NAMES 'charset_name'
SET CHARACTER SET charset_name

SET NAMES indicates what character set the client will use to send SQL statements to the server. Thus, SET NAMES 'cp1251'
tells the server “future incoming messages from this client are in character set cp1251.” It also specifies the character set that the
server should use for sending results back to the client. (For example, it indicates what character set to use for column values if you
use a SELECT statement.)

A SET NAMES 'x' statement is equivalent to these three statements:

SET character_set_client = x;
SET character_set_results = x;
SET character_set_connection = x;

Setting character_set_connection to x also sets collation_connection to the default collation for x. It is not ne-
cessary to set that collation explicitly. To specify a particular collation for the character sets, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and collation_connection
to character_set_database and collation_database. A SET CHARACTER SET x statement is equivalent to these
three statements:

SET character_set_client = x;
SET character_set_results = x;
SET collation_connection = @@collation_database;

Setting collation_connection also sets character_set_connection to the character set associated with the collation
(equivalent to executing SET character_set_connection = @@character_set_database). It is not necessary to
set character_set_connection explicitly.

When a client connects, it sends to the server the name of the character set that it wants to use. The server uses the name to set the
character_set_client, character_set_results, and character_set_connection system variables. In effect,
the server performs a SET NAMES operation using the character set name.

With the mysql client, it is not necessary to execute SET NAMES every time you start up if you want to use a character set differ-
ent from the default. You can add the --default-character-set option setting to your mysql statement line, or in your
option file. For example, the following option file setting changes the three character set variables set to koi8r each time you in-
voke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable to use the charset
command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that is used if mysql recon-
nects after the connection has dropped.

Character Set Support

9

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_database
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/mysql-description.html#option_mysql_default-character-set


Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say SET NAMES or SET
CHARACTER SET, then for SELECT column1 FROM t, the server sends back all the values for column1 using the character
set that the client specified when it connected. On the other hand, if you say SET NAMES 'latin1' or SET CHARACTER
SET latin1 before issuing the SELECT statement, the server converts the latin2 values to latin1 just before sending res-
ults back. Conversion may be lossy if there are characters that are not in both character sets.

If you do not want the server to perform any conversion of result sets, set character_set_results to NULL or binary:

SET character_set_results = NULL;

Note

ucs2 cannot be used as a client character set, which means that it does not work for SET NAMES or SET CHARAC-
TER SET.

To see the values of the character set and collation system variables that apply to your connection, use these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL applications execute. See Section 1.5, “Configuring the Char-
acter Set and Collation for Applications”.

1.5. Configuring the Character Set and Collation for Applications
For applications that store data using the default MySQL character set and collation (latin1, latin1_swedish_ci), no spe-
cial configuration should be needed. If applications require data storage using a different character set or collation, you can config-
ure character set information several ways:

• Specify character settings per database. For example, applications that use one database might require utf8, whereas applica-
tions that use another database might require sjis.

• Specify character settings at server startup. This causes the server to use the given settings for all applications that do not make
other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the server to use the given set-
tings for all applications, without having to specify them at server startup.

When different applications require different character settings, the per-database technique provides a good deal of flexibility. If
most or all applications use the same character set, specifying character settings at server startup or configuration time may be most
convenient.

For the per-database or server-startup techniques, the settings control the character set for data storage. Applications must also tell
the server which character set to use for client/server communications, as described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation.

Specify character settings per database. To create a database such that its tables will use a given default character set and colla-
tion for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
DEFAULT CHARACTER SET utf8
DEFAULT COLLATE utf8_general_ci;

Tables created in the database will use utf8 and utf8_general_ci by default for any character columns.

Applications that use the database should also configure their connection to the server each time they connect. This can be done by
executing a SET NAMES 'utf8' statement after connecting. The statement can be used regardless of connection method: The
mysql client, PHP scripts, and so forth.

In some cases, it may be possible to configure the connection to use the desired character set some other way. For example, for
connections made using mysql, you can specify the --default-character-set=utf8 command-line option to achieve the
same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 1.4, “Connection Character Sets and Collations”.

Specify character settings at server startup. To select a character set and collation at server startup, use the -
-character-set-server and --collation-server options. For example, to specify the options in an option file, in-

Character Set Support

10

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/create-database.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-description.html#option_mysql_default-character-set
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server


clude these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application, and for tables created in those
databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent after they connect, as described
previously. You might be tempted to start the server with the --init_connect="SET NAMES 'utf8'" option to cause SET
NAMES to be executed automatically for each client that connects. However, this will yield inconsistent results because the
init_connect value is not executed for users who have the SUPER privilege.

Specify character settings at MySQL configuration time. To select a character set and collation when you configure and build
MySQL from source, use the --with-charset and --with-collation options:

shell> ./configure --with-charset=utf8 --with-collation=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and for client connections. It is
unnecessary to use --character-set-server and --collation-server at server startup. It is also unnecessary for ap-
plications to configure their connection using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider the environment within
which those applications execute. If you will send statements using UTF-8 text taken from a file that you create in an editor, you
should edit the file with the locale of your environment set to UTF-8 so that the file's encoding is correct and so that the operating
system handles it correctly. If you use the mysql client from within a terminal window, the window must be configured to use
UTF-8 or characters may not display properly. For a script that executes in a Web environment, the script must handle character en-
coding properly for its interaction with the MySQL server, and it must generate pages that correctly indicate the encoding so that
browsers know how to display the content of the pages. For example, you can include this <meta> tag within your <head> ele-
ment:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

1.6. Collation Issues
The following sections discuss various aspects of character set collations.

1.6.1. Using COLLATE in SQL Statements
With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE may be used in various
parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

Character Set Support

11

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_init_connect
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_init_connect
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-charset
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-collation
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server


• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'MÃ¼ller' COLLATE latin1_german2_ci = k;

SELECT *
FROM t1
WHERE k LIKE _latin1 'MÃ¼ller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'MÃ¼ller' COLLATE latin1_german2_ci;

1.6.2. COLLATE Clause Precedence
The COLLATE clause has high precedence (higher than ||), so the following two expressions are equivalent:

x || y COLLATE z
x || (y COLLATE z)

1.6.3. BINARY Operator
The BINARY operator casts the string following it to a binary string. This is an easy way to force a comparison to be done byte by
byte rather than character by character. BINARY also causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column defined with the BINARY attribute
is assigned the binary collation of the column's character set. Every character set has a binary collation. For example, the binary
collation for the latin1 character set is latin1_bin, so if the table default character set is latin1, these two column defini-
tions are equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The effect of BINARY as a column attribute differs from its effect prior to MySQL 4.1. Formerly, BINARY resulted in a column
that was treated as a binary string. A binary string is a string of bytes that has no character set or collation, which differs from a
nonbinary character string that has a binary collation. For both types of strings, comparisons are based on the numeric values of the
string unit, but for nonbinary strings the unit is the character and some character sets allow multi-byte characters. The BINARY and
VARBINARY Types.

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the column to be treated
as a binary data type. For example, the following pairs of definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)
VARCHAR(10) CHARACTER SET binary
VARBINARY(10)
TEXT CHARACTER SET binary
BLOB

1.6.4. The _bin and binary Collations
This section describes how _bin collations for nonbinary strings differ from the binary “collation” for binary strings.

Character Set Support

12

http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#operator_binary
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#operator_binary
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html


Nonbinary strings (as stored in the CHAR, VARCHAR, and TEXT data types) have a character set and collation. A given character
set can have several collations, each of which defines a particular sorting and comparison order for the characters in the set. One of
these is the binary collation for the character set, indicated by a _bin suffix in the collation name. For example, latin1 and
utf8 have binary collations named latin1_bin and utf8_bin.

Binary strings (as stored in the BINARY, VARBINARY, and BLOB data types) have no character set or collation in the sense that
nonbinary strings do. (Applied to a binary string, the CHARSET() and COLLATION() functions both return a value of binary.)
Binary strings are sequences of bytes and the numeric values of those bytes determine sort order.

The _bin collations differ from the binary collation in several respects.

The unit for sorting and comparison. Binary strings are sequences of bytes. Sorting and comparison is always based on numeric
byte values. Nonbinary strings are sequences of characters, which might be multi-byte. Collations for nonbinary strings define an
ordering of the character values for sorting and comparison. For the _bin collation, this ordering is based solely on numeric values
of the characters (which is similar to ordering for binary strings except that a _bin collation must take into account that a character
might contain multiple bytes). For other collations, character ordering might take additional factors such as lettercase into account.

Character set conversion. A nonbinary string has a character set and is converted to another character set in many cases, even
when the string has a _bin collation:

• When assigning column values from another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For the preceding cases, the string value is copied byte-wise.

Lettercase conversion. Collations provide information about lettercase of characters, so characters in a nonbinary string can be
converted from one lettercase to another, even for _bin collations that ignore lettercase for ordering:

mysql> SET NAMES latin1 COLLATE latin1_bin;
Query OK, 0 rows affected (0.02 sec)
mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+
1 row in set (0.13 sec)

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the string must be converted
to a nonbinary string:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA | aa |
+-------------+-----------------------------------+
1 row in set (0.00 sec)

Trailing space handling in comparisons. Nonbinary strings have PADSPACE behavior for all collations, including _bin colla-
tions. Trailing spaces are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+

Character Set Support

13

http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/update.html


1 row in set (0.00 sec)

For binary strings, all characters are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)

Trailing space handling for inserts and retrievals. CHAR(N) columns store nonbinary strings. Values shorter than N characters
are extended with spaces on insertion. For retrieval, trailing spaces are removed.

BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes on insertion. For retrieval,
nothing is removed; a value of the declared length is always returned.

mysql> CREATE TABLE t1 (
-> a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
-> b BINARY(10)
-> );

Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO t1 VALUES ('a','a');
Query OK, 1 row affected (0.01 sec)
mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b) |
+--------+----------------------+
| 61 | 61000000000000000000 |
+--------+----------------------+
1 row in set (0.04 sec)

1.6.5. Special Cases Where Collation Determination Is Tricky
In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison operation. For example, in the
following cases, it should be clear that the collation is the collation of column x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should this query use the collation of the column x, or of the string literal 'Y'?

Standard SQL resolves such questions using what used to be called “coercibility” rules. Basically, this means: Both x and 'Y'
have collations, so which collation takes precedence? This can be difficult to resolve, but the following rules cover most situations:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility of 3.

• A literal's collation has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility of 5.

The preceding coercibility values are current as of MySQL 5.0.3. In MySQL 5.0 prior to 5.0.3, there is no system constant or ignor-
able coercibility. Functions such as USER() have a coercibility of 2 rather than 3, and literals have a coercibility of 3 rather than 4.

Those rules resolve ambiguities in the following manner:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

Character Set Support

14

http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_version
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_user


• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the side with Unicode
character set wins, and automatic character set conversion is applied to the non-Unicode side. For example, the following
statement will not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It will return a result, and the character set of the result will be utf8. The collation of the result will be the collation of
utf8_column. Values of latin1_column will be automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and a _ci or _cs collation, the
_bin collation is used. This is similar to how operations that mix nonbinary and binary strings evaluate the operands as
binary strings, except that it is for collations rather than data types.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in
terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can ap-
ply to a subset,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings.

Examples:

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY(VERSION());
-> 3

mysql> SELECT COERCIBILITY('A');
-> 4

See Information Functions.

1.6.6. Collations Must Be for the Right Character Set
Each character set has one or more collations, but each collation is associated with one and only one character set. Therefore, the
following statement causes an error message because the latin2_bin collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

1.6.7. Examples of the Effect of Collation
Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
MÃ¼ller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler MÃ¼ller

MX Systems MÃ¼ller Muffler

Character Set Support

15

http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_coercibility
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html


MÃ¼ller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü), which the Germans call
“U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says that U-umlaut sorts with
Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> CREATE TABLE german1 (
-> c CHAR(10)
-> ) CHARACTER SET latin1 COLLATE latin1_german1_ci;

mysql> CREATE TABLE german2 (
-> c CHAR(10)
-> ) CHARACTER SET latin1 COLLATE latin1_german2_ci;

mysql> CREATE TABLE germanutf8 (
-> c CHAR(10)
-> ) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('BÃ¤r');
mysql> INSERT INTO german2 VALUES ('Bar'), ('BÃ¤r');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('BÃ¤r');

Two of the above collations have an A = Ã# equality, and one has no such equality (latin1_german2_ci). For that reason,
you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'BÃ¤r';
+------+
| c |
+------+
| Bar |
| BÃ¤r |
+------+
mysql> SELECT * FROM german2 WHERE c = 'BÃ¤r';
+------+
| c |
+------+
| BÃ¤r |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'BÃ¤r';
+------+
| c |
+------+
| Bar |
| BÃ¤r |
+------+

This is not a bug but rather a consequence of the sorting that latin1_german1_ci or utf8_unicode_ci do (the sorting
shown is done according to the German DIN 5007 standard).

1.7. String Repertoire
The repertoire of a character set is the collection of characters in the set.

As of MySQL 5.0.48, string expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted safely without loss of in-

Character Set Support

16

http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/select.html


formation to the character set of any string with UNICODE repertoire or to a character set that is a superset of ASCII. (All MySQL
character sets are supersets of ASCII with the exception of swe7, which reuses some punctuation characters for Swedish accented
characters.) The use of repertoire enables character set conversion in expressions for many cases where MySQL would otherwise
return an “illegal mix of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how the use of repertoire changes
string expression evaluation:

• The repertoire for string constants depends on string content:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain any characters outside the
ASCII range, so their repertoire is ASCII rather than UNICODE.

• Columns having the ascii character set have ASCII repertoire because of their character set. In the following table, c1 has
ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an error occurs without rep-
ertoire:

CREATE TABLE t1 (
c1 CHAR(1) CHARACTER SET latin1,
c2 CHAR(1) CHARACTER SET ascii

);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of UPPER(_utf8'abc') has ASCII
repertoire, because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use character_set_connection as the result
character set, the result repertoire is ASCII if character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

Character Set Support

17

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_upper
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection


• Functions with two or more string arguments use the “widest” argument repertoire for the result repertoire (UNICODE is wider
than ASCII). Consider the following CONCAT() calls:

CONCAT(_ucs2 0x0041, _ucs2 0x0042)
CONCAT(_ucs2 0x0041, _ucs2 0x00C2)

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii character set. For the
second call, the repertoire is UNICODE because the second argument is outside the ascii character set range.

• The repertoire for function return values is determined based only on the repertoire of the arguments that affect the result's char-
acter set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third argument) both have AS-
CII repertoire. The first argument does not matter for the result repertoire, even if the expression uses string values.

1.8. Operations Affected by Character Set Support
This section describes operations that take character set information into account.

1.8.1. Result Strings
MySQL has many operators and functions that return a string. This section answers the question: What is the character set and col-
lation of such a string?

For simple functions that take string input and return a string result as output, the output's character set and collation are the same
as those of the principal input value. For example, UPPER(X) returns a string whose character string and collation are the same as
that of X. The same applies for INSTR(), LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(),
RIGHT(), RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string input and performs a case-
sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can be checked by using the
CHARSET() and COLLATION() functions, both of which return binary to indicate that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation rules” of standard SQL apply
for determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting collation is X. The
same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result from the operations are defined
by the character_set_connection and collation_connection system variables. This applies only to CAST(),
CONV(), FORMAT(), HEX(), SPACE(). Before MySQL 5.0.15, it also applies to CHAR().

If you are uncertain about the character set or collation of the result returned by a string function, you can use the CHARSET() or
COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |

Character Set Support

18

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_upper
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_instr
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_lcase
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_lower
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_ltrim
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_mid
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_repeat
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_replace
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_reverse
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_right
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_rpad
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_rtrim
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_soundex
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_substring
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_trim
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_ucase
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_upper
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_replace
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_charset
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_collation
http://dev.mysql.com/doc/refman/5.0/en/union.html
http://dev.mysql.com/doc/refman/5.0/en/logical-operators.html#operator_or
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_concat
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_elt
http://dev.mysql.com/doc/refman/5.0/en/comparison-operators.html#function_greatest
http://dev.mysql.com/doc/refman/5.0/en/control-flow-functions.html#function_if
http://dev.mysql.com/doc/refman/5.0/en/comparison-operators.html#function_least
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/mathematical-functions.html#function_conv
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_format
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_hex
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_space
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_char
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_charset
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_collation


+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+

1.8.2. CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'MÃ¼ller' USING utf8);
INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are defined by the charac-
ter_set_connection and collation_connection system variables. If you use CAST() with CHARACTER SET X,
the resulting character set and collation are X and the default collation of X.

You may not use a COLLATE clause inside a CAST(), but you may use it outside. That is, CAST(... COLLATE ...) is illeg-
al, but CAST(...) COLLATE ... is legal.

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

1.8.3. SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW CHARACTER SET, SHOW COLLA-
TION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW COLUMNS. These statements are described here briefly.
For more information, see SHOW Syntax.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by the SHOW statements. For ex-
ample, the CHARACTER_SETS and COLLATIONS tables contain the information displayed by SHOW CHARACTER SET and
SHOW COLLATION. See INFORMATION_SCHEMA Tables.

The SHOW CHARACTER SET command shows all available character sets. It takes an optional LIKE clause that indicates which
character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
| latin1 | cp1252 West European | latin1_swedish_ci | 1 |
| latin2 | ISO 8859-2 Central European | latin2_general_ci | 1 |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci | 1 |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci | 1 |
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE clause that indicates which
collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
| latin1_german1_ci | latin1 | 5 | | | 0 |
| latin1_swedish_ci | latin1 | 8 | Yes | Yes | 0 |
| latin1_danish_ci | latin1 | 15 | | | 0 |
| latin1_german2_ci | latin1 | 31 | | Yes | 2 |

Character Set Support

19

http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_convert
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_convert
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/cast-functions.html#function_cast
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/show-create-database.html
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.0/en/show-columns.html
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://dev.mysql.com/doc/refman/5.0/en/character-sets-table.html
http://dev.mysql.com/doc/refman/5.0/en/collations-table.html
http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/information-schema.html
http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.0/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/string-comparison-functions.html#operator_like


| latin1_bin | latin1 | 47 | | Yes | 0 |
| latin1_general_ci | latin1 | 48 | | | 0 |
| latin1_general_cs | latin1 | 49 | | | 0 |
| latin1_spanish_ci | latin1 | 94 | | | 0 |
+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:

mysql> SHOW CREATE DATABASE test;
+----------+-----------------------------------------------------------------+
| Database | Create Database |
+----------+-----------------------------------------------------------------+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+-----------------------------------------------------------------+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table. The column definitions in-
dicate any character set specifications, and the table options include character set information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW FULL COLUMNS. Columns
with CHAR, VARCHAR, or TEXT data types have collations. Numeric and other non-character types have no collation (indicated by
NULL as the Collation value). For example:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************

Field: id
Type: smallint(5) unsigned

Collation: NULL
Null: NO
Key: PRI

Default: NULL
Extra: auto_increment

Privileges: select,insert,update,references
Comment:

*************************** 2. row ***************************
Field: name
Type: char(60)

Collation: latin1_swedish_ci
Null: NO
Key:

Default:
Extra:

Privileges: select,insert,update,references
Comment:

The character set is not part of the display but is implied by the collation name.

1.9. Unicode Support
MySQL 5.0 supports two character sets for storing Unicode data:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character

These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode Version 3.0. BMP characters
have these characteristics:

• Their code values are between 0 and 65535 (or U+0000 .. U+FFFF)

• They can be encoded with a fixed 16-bit word, as in ucs2

• They can be encoded with 8, 16, or 24 bits, as in utf8

• They are sufficient for almost all characters in major languages

The ucs2 and utf8 character sets do not support supplementary characters that lie outside the BMP.

A similar set of collations is available for each Unicode character set. For example, each has a Danish collation, the names of which
are ucs2_danish_ci and utf8_danish_ci. All Unicode collations are listed at Section 1.12.1, “Unicode Character Sets”.

In UCS-2, every character is represented by a two-byte Unicode code with the most significant byte first. For example: LATIN
CAPITAL LETTER A has the code 0x0041 and it is stored as a two-byte sequence: 0x00 0x41. CYRILLIC SMALL LET-

Character Set Support

20

http://dev.mysql.com/doc/refman/5.0/en/show-create-database.html
http://dev.mysql.com/doc/refman/5.0/en/create-database.html
http://dev.mysql.com/doc/refman/5.0/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.0/en/create-table.html
http://dev.mysql.com/doc/refman/5.0/en/show-columns.html
http://dev.mysql.com/doc/refman/5.0/en/show-columns.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html


TER YERU (Unicode 0x044B) is stored as a two-byte sequence: 0x04 0x4B. For Unicode characters and their codes, please
refer to the Unicode Home Page.

The MySQL implementation of UCS-2 stores characters in big-endian byte order and does not use a byte order mark (BOM) at the
beginning of UCS-2 values. Other database systems might use little-endian byte order or a BOM, in which case, conversion of
UCS-2 values will need to be performed when transferring data between those systems and MySQL.

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data. It is implemented according
to RFC 3629. RFC 3629 describes encoding sequences that take from one to four bytes. Currently, MySQL support for UTF-8 does
not include four-byte sequences. (An older standard for UTF-8 encoding is given by RFC 2279, which describes UTF-8 sequences
that take from one to six bytes. RFC 3629 renders RFC 2279 obsolete; for this reason, sequences with five and six bytes are no
longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a two-byte sequence: extended Latin letters (with tilde, macron, acute,
grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use three-byte sequences.

MySQL uses no BOM for UTF-8 values.

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three bytes for each character in
a CHAR CHARACTER SET utf8 column because that is the maximum possible length. For example, MySQL must reserve 30
bytes for a CHAR(10) CHARACTER SET utf8 column.

UCS-2 cannot be used as a client character set, which means that SET NAMES 'ucs2' does not work. (See Section 1.4,
“Connection Character Sets and Collations”.)

Client applications that need to communicate with the server using Unicode should set the client character set accordingly; for ex-
ample, by issuing a SET NAMES 'utf8' statement. ucs2 cannot be used as a client character set, which means that it does not
work for SET NAMES or SET CHARACTER SET. (See Section 1.4, “Connection Character Sets and Collations”.)

1.10. UTF-8 for Metadata
Metadata is “the data about the data.” Anything that describes the database — as opposed to being the contents of the database —
is metadata. Thus column names, database names, user names, version names, and most of the string results from SHOW are
metadata. This is also true of the contents of tables in INFORMATION_SCHEMA, because those tables by definition contain in-
formation about database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW commands nor SELECT statements for tables in
INFORMATION_SCHEMA would work properly because different rows in the same column of the results of these operations
would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name columns and tables using
their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This does not cause any disrup-
tion if you never use accented or non-Latin characters. But if you do, you should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(), SESSION_USER(), SYS-
TEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character set by default.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the results of DESCRIBE func-
tions in the character_set_system character set by default. When you use SELECT column1 FROM t, the name

Character Set Support

21

http://www.unicode.org/
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://dev.mysql.com/doc/refman/5.0/en/show.html
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_current-user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_session-user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_system-user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_system-user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_database
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_version
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_system
http://dev.mysql.com/doc/refman/5.0/en/describe.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_system


column1 itself is returned from the server to the client in the character set determined by the value of the charac-
ter_set_results system variable, which has a default value of latin1. If you want the server to pass metadata results back
in a different character set, use the SET NAMES statement to force the server to perform character set conversion. SET NAMES
sets the character_set_results and other related system variables. (See Section 1.4, “Connection Character Sets and Colla-
tions”.) Alternatively, a client program can perform the conversion after receiving the result from the server. It is more efficient for
the client perform the conversion, but this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata using its original
character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement, don't worry. MySQL
performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the assignment.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that every character set is (in
terms of supported characters) a “subset” of Unicode. Because it is a well-known principle that “what applies to a superset can ap-
ply to a subset,” we believe that a collation for Unicode can apply for comparisons with non-Unicode strings. For more information
about coercion of strings, see Section 1.6.5, “Special Cases Where Collation Determination Is Tricky”.

1.11. Column Character Set Conversion
To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For successful conversion to
occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must be encoded using a
single character set (the character set you're converting the column to). If you use a binary column to store information in mul-
tiple character sets, MySQL has no way to know which values use which character set and cannot convert the data properly.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the column's character
set, not some other character set. If the contents are encoded in a different character set, you can convert the column to use a
binary data type first, and then to a nonbinary column with the desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that the information in the
column is encoded using a single character set, you can convert it to a nonbinary column that has that character set. For example, if
col1 contains binary data representing characters in the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting values will be padded
with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET latin1 but you want to
convert it to use utf8 so that you can store values from many languages. The following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from MySQL 4.0 or earlier where a nonbinary column contains values that actually are
encoded in a character set different from the server's default character set. For example, an application might have stored sjis val-
ues in a column, even though MySQL's default character set was latin1. It is possible to convert the column to use the proper
character set but an additional step is required. Suppose that the server's default character set was latin1 and col1 is defined as
CHAR(50) but its contents are sjis values. The first step is to convert the column to a binary data type, which removes the exist-
ing character set information without performing any character conversion:

ALTER TABLE t MODIFY col1 BLOB;

Character Set Support

22

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_system
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.0/en/information-functions.html#function_user
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/char.html
http://dev.mysql.com/doc/refman/5.0/en/blob.html
http://dev.mysql.com/doc/refman/5.0/en/string-functions.html#function_trim


The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT or UPDATE after an up-
grade to MySQL 4.1 or later. In that case, MySQL would store new values in the column using latin1, and the column will con-
tain a mix of sjis and latin1 values and cannot be converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering the table with ALTER TA-
BLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you should also provide them in the ALTER TA-
BLE statement. Otherwise, the resulting column definition will not include those attributes.

1.12. Character Sets and Collations That MySQL Supports
MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets MySQL supports. There is one
subsection for each group of related character sets. For each character set, the allowable collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
| big5 | Big5 Traditional Chinese | big5_chinese_ci |
| dec8 | DEC West European | dec8_swedish_ci |
| cp850 | DOS West European | cp850_general_ci |
| hp8 | HP West European | hp8_english_ci |
| koi8r | KOI8-R Relcom Russian | koi8r_general_ci |
| latin1 | cp1252 West European | latin1_swedish_ci |
| latin2 | ISO 8859-2 Central European | latin2_general_ci |
| swe7 | 7bit Swedish | swe7_swedish_ci |
| ascii | US ASCII | ascii_general_ci |
| ujis | EUC-JP Japanese | ujis_japanese_ci |
| sjis | Shift-JIS Japanese | sjis_japanese_ci |
| hebrew | ISO 8859-8 Hebrew | hebrew_general_ci |
| tis620 | TIS620 Thai | tis620_thai_ci |
| euckr | EUC-KR Korean | euckr_korean_ci |
| koi8u | KOI8-U Ukrainian | koi8u_general_ci |
| gb2312 | GB2312 Simplified Chinese | gb2312_chinese_ci |
| greek | ISO 8859-7 Greek | greek_general_ci |
| cp1250 | Windows Central European | cp1250_general_ci |
| gbk | GBK Simplified Chinese | gbk_chinese_ci |
| latin5 | ISO 8859-9 Turkish | latin5_turkish_ci |
| armscii8 | ARMSCII-8 Armenian | armscii8_general_ci |
| utf8 | UTF-8 Unicode | utf8_general_ci |
| ucs2 | UCS-2 Unicode | ucs2_general_ci |
| cp866 | DOS Russian | cp866_general_ci |
| keybcs2 | DOS Kamenicky Czech-Slovak | keybcs2_general_ci |
| macce | Mac Central European | macce_general_ci |
| macroman | Mac West European | macroman_general_ci |
| cp852 | DOS Central European | cp852_general_ci |
| latin7 | ISO 8859-13 Baltic | latin7_general_ci |
| cp1251 | Windows Cyrillic | cp1251_general_ci |
| cp1256 | Windows Arabic | cp1256_general_ci |
| cp1257 | Windows Baltic | cp1257_general_ci |
| binary | Binary pseudo charset | binary |
| geostd8 | GEOSTD8 Georgian | geostd8_general_ci |
| cp932 | SJIS for Windows Japanese | cp932_japanese_ci |
| eucjpms | UJIS for Windows Japanese | eucjpms_japanese_ci |
+----------+-----------------------------+---------------------+

In cases where a character set has multiple collations, it might not be clear which collation is most suitable for a given application.
To avoid choosing the wrong collation, it can be helpful to perform some comparisons with representative data values to make sure
that a given collation sorts values the way you expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

1.12.1. Unicode Character Sets
MySQL 5.0 has two Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character

You can store text in about 650 languages using these character sets. This section lists the collations available for each Unicode
character set. For general information about the character sets, see Section 1.9, “Unicode Support”.

Character Set Support

23

http://dev.mysql.com/doc/refman/5.0/en/insert.html
http://dev.mysql.com/doc/refman/5.0/en/update.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/alter-table.html
http://dev.mysql.com/doc/refman/5.0/en/show-character-set.html
http://www.collation-charts.org/


A similar set of collations is available for each Unicode character set. These are shown in the following list, where xxx represents
the character set name. For example, xxx_danish_ci represents the Danish collations, the specific names of which are
ucs2_danish_ci and utf8_danish_ci.

• xxx_bin

• xxx_czech_ci

• xxx_danish_ci

• xxx_esperanto_ci

• xxx_estonian_ci

• xxx_general_ci (default)

• xxx_hungarian_ci

• xxx_icelandic_ci

• xxx_latvian_ci

• xxx_lithuanian_ci

• xxx_persian_ci

• xxx_polish_ci

• xxx_roman_ci

• xxx_romanian_ci

• xxx_slovak_ci

• xxx_slovenian_ci

• xxx_spanish2_ci

• xxx_spanish_ci

• xxx_swedish_ci

• xxx_turkish_ci

• xxx_unicode_ci

The xxx_esperanto_ci collations were added in MySQL 5.0.13. The xxx_hungarian_ci collations were added in
MySQL 5.0.19.

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm (UCA) described at ht-
tp://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight keys: ht-
tp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. Currently, the xxx_unicode_ci collations have only partial support
for the Unicode Collation Algorithm. Some characters are not supported yet. Also, combining marks are not fully supported. This
affects primarily Vietnamese, Yoruba, and some smaller languages such as Navajo. The following discussion uses
utf8_unicode_ci for concreteness.

For any Unicode character set, operations performed using the _general_ci collation are faster than those for the
_unicode_ci collation. For example, comparisons for the utf8_general_ci collation are faster, but slightly less correct,
than comparisons for utf8_unicode_ci. The reason for this is that utf8_unicode_ci supports mappings such as expan-
sions; that is, when one character compares as equal to combinations of other characters. For example, in German and some other
languages “Ã#” is equal to “ss”. utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci
is a legacy collation that does not support expansions, contractions, or ignorable characters. It can make only one-to-one comparis-
ons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for the effect this has
in comparisons or when doing searches, see Section 1.6.7, “Examples of the Effect of Collation”):

Ã# = A
Ã# = O
Ã# = U

Character Set Support

24

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt


A difference between the collations is that this is true for utf8_general_ci:

Ã# = s

Whereas this is true for utf8_unicode_ci:

Ã# = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with utf8_unicode_ci does
not work well for a language. For example, utf8_unicode_ci works fine for German and French, so there is no need to create
special utf8 collations for these two languages.

utf8_general_ci also is satisfactory for both German and French, except that “Ã#” is equal to “s”, and not to “ss”. If this is
acceptable for your application, then you should use utf8_general_ci because it is faster. Otherwise, use
utf8_unicode_ci because it is more accurate.

utf8_swedish_ci, like other utf8 language-specific collations, is derived from utf8_unicode_ci with additional lan-
guage rules. For example, in Swedish, the following relationship holds, which is not something expected by a German or French
speaker:

Ã# = Y < Ã#

The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and traditional Spanish, respectively.
In both collations, “Ã±” (n-tilde) is a separate letter between “n” and “o”. In addition, for traditional Spanish, “ch” is a separate
letter between “c” and “d”, and “ll” is a separate letter between “l” and “m”

In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.

For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).

1.12.2. West European Character Sets
Western European character sets cover most West European languages, such as French, Spanish, Catalan, Basque, Portuguese,
Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish, Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

Character Set Support

25

http://www.collation-charts.org/mysql60/by-charset.html#utf8


• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character set. This means it is the
same as the official ISO 8859-1 or IANA (Internet Assigned Numbers Authority) latin1, except that IANA latin1
treats the code points between 0x80 and 0x9f as “undefined,” whereas cp1252, and therefore MySQL's latin1, assign
characters for those positions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates
0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL customers. Although it is
frequently said that it is based on the Swedish/Finnish collation rules, there are Swedes and Finns who disagree with this state-
ment.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2 standards, where
DIN stands for Deutsches Institut fÃ¼r Normung (the German equivalent of ANSI). DIN-1 is called the “dictionary collation”
and DIN-2 is called the “phone book collation.” For an example of the effect this has in comparisons or when doing searches,
see Section 1.6.7, “Examples of the Effect of Collation”.

• latin1_german1_ci (dictionary) rules:

Ã# = A
Ã# = O
Ã# = U
Ã# = s

• latin1_german2_ci (phone-book) rules:

Ã# = AE
Ã# = OE
Ã# = UE
Ã# = ss

For an example of the effect this has in comparisons or when doing searches, see Section 1.6.7, “Examples of the Effect of Col-
lation”.

In the latin1_spanish_ci collation, “Ã±” (n-tilde) is a separate letter between “n” and “o”.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

For additional information about Western European collations in MySQL, see Collation-Charts.Org (ascii, cp850, dec8, hp8, latin1,
macroman, swe7).

1.12.3. Central European Character Sets
MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary, Romania, Slovenia, Croatia, Po-
land, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

Character Set Support

26

http://www.collation-charts.org/mysql60/by-charset.html#ascii
http://www.collation-charts.org/mysql60/by-charset.html#cp850
http://www.collation-charts.org/mysql60/by-charset.html#dec8
http://www.collation-charts.org/mysql60/by-charset.html#hp8
http://www.collation-charts.org/mysql60/by-charset.html#latin1
http://www.collation-charts.org/mysql60/by-charset.html#macroman
http://www.collation-charts.org/mysql60/by-charset.html#swe7


• cp1250_general_ci (default)

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

For additional information about Central European collations in MySQL, see Collation-Charts.Org (cp1250, cp852, keybcs2,
latin2, macce).

1.12.4. South European and Middle East Character Sets
South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic, Georgian, Greek, Hebrew, and
Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

Character Set Support

27

http://www.collation-charts.org/mysql60/by-charset.html#cp1250
http://www.collation-charts.org/mysql60/by-charset.html#cp852
http://www.collation-charts.org/mysql60/by-charset.html#keybcs2
http://www.collation-charts.org/mysql60/by-charset.html#latin2
http://www.collation-charts.org/mysql60/by-charset.html#macce


• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

For additional information about South European and Middle Eastern collations in MySQL, see Collation-Charts.Org (armscii8,
cp1256, geostd8, greek, hebrew, latin5).

1.12.5. Baltic Character Sets
The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).

1.12.6. Cyrillic Character Sets
The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and Serbian (Cyrillic) lan-
guages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

Character Set Support

28

http://www.collation-charts.org/mysql60/by-charset.html#armscii8
http://www.collation-charts.org/mysql60/by-charset.html#cp1256
http://www.collation-charts.org/mysql60/by-charset.html#geostd8
http://www.collation-charts.org/mysql60/by-charset.html#greek
http://www.collation-charts.org/mysql60/by-charset.html#hebrew
http://www.collation-charts.org/mysql60/by-charset.html#latin5
http://www.collation-charts.org/mysql60/by-charset.html#cp1257
http://www.collation-charts.org/mysql60/by-charset.html#latin7


For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866, koi8r, koi8u). ).

1.12.7. Asian Character Sets
The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be complicated. For example, the
Chinese sets must allow for thousands of different characters. See Section 1.12.7.1, “The cp932 Character Set”, for additional in-
formation about the cp932 and sjis character sets.

For answers to some common questions and problems relating support for Asian character sets in MySQL, see MySQL 5.1 FAQ —
MySQL Chinese, Japanese, and Korean Character Sets.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932, eucjpms, euckr, gb2312, gbk,
sjis, tis620, ujis).

Character Set Support

29

http://www.collation-charts.org/mysql60/by-charset.html#cp1251
http://www.collation-charts.org/mysql60/by-charset.html#cp866
http://www.collation-charts.org/mysql60/by-charset.html#koi8r
http://www.collation-charts.org/mysql60/by-charset.html#koi8u
http://dev.mysql.com/doc/refman/5.0/en/faqs-cjk.html
http://dev.mysql.com/doc/refman/5.0/en/faqs-cjk.html
http://www.collation-charts.org/mysql60/by-charset.html#big5
http://www.collation-charts.org/mysql60/by-charset.html#cp932
http://www.collation-charts.org/mysql60/by-charset.html#eucjpms
http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.collation-charts.org/mysql60/by-charset.html#gbk
http://www.collation-charts.org/mysql60/by-charset.html#sjis
http://www.collation-charts.org/mysql60/by-charset.html#tis620
http://www.collation-charts.org/mysql60/by-charset.html#ujis


1.12.7.1. The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which supports JIS X0201 and
JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes the extensions to
Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of Shift_JIS and its exact name is
Microsoft Windows Codepage : 932 or cp932. In addition to the characters supported by Shift_JIS, cp932 sup-
ports extension characters such as NEC special characters, NEC selected — IBM extended characters, and IBM extended charac-
ters.

Many Japanese users have experienced problems using these extension characters. These problems stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted via Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are converted to Unicode dif-
ferently depending on the conversion rule. MySQL supports only one of these rules (described later).

The MySQL cp932 character set is designed to solve these problems. It is available as of MySQL 5.0.3.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and cp932 into two different
character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected — IBM extended characters, and IBM selected characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode code point. When convert-
ing from Unicode back to cp932, one of the code points must be selected. For this “round trip conversion,” the rule recom-
mended by Microsoft is used. (See http://support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of NEC special charac-
ters.

• If the character is in both IBM selected characters and NEC selected — IBM extended characters, use the code point of
IBM extended characters.

The table shown at http://www.microsoft.com/globaldev/reference/dbcs/932.htm provides information about the Unicode val-
ues of cp932 characters. For cp932 table entries with characters under which a four-digit number appears, the number repres-
ents the corresponding Unicode (ucs2) encoding. For table entries with an underlined two-digit value appears, there is a range
of cp932 character values that begin with those two digits. Clicking such a table entry takes you to a page that displays the
Unicode value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of characters:

• NEC special characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm

• NEC selected — IBM extended characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm

Character Set Support

30

http://www.iana.org/assignments/character-sets
http://support.microsoft.com/kb/170559/EN-US/
http://www.microsoft.com/globaldev/reference/dbcs/932.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm


• IBM selected characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm

• Starting from version 5.0.3, cp932 supports conversion of user-defined characters in combination with eucjpms, and solves
the problems with sjis/ujis conversion. For details, please refer to http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables illustrate these differ-
ences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-handshake (or -
-skip-character-set-client-handshake) has an important effect. See Server Command Options.

Character Set Support

31

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-client-handshake
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-client-handshake
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-client-handshake
http://dev.mysql.com/doc/refman/5.0/en/server-options.html


Chapter 2. The Character Set Used for Data and Sorting
By default, MySQL uses the latin1 (cp1252 West European) character set and the latin1_swedish_ci collation that sorts
according to Swedish/Finnish rules. These defaults are suitable for the United States and most of Western Europe.

All MySQL binary distributions are compiled with --with-extra-charsets=complex. This adds code to all standard pro-
grams that enables them to handle latin1 and all multi-byte character sets within the binary. Other character sets are loaded from
a character-set definition file when needed.

The character set determines what characters are allowed in identifiers. The collation determines how strings are sorted by the OR-
DER BY and GROUP BY clauses of the SELECT statement.

You can change the default server character set and collation with the --character-set-server and -
-collation-server options when you start the server. The collation must be a legal collation for the default character set.
(Use the SHOW COLLATION statement to determine which collations are available for each character set.) See Server Command
Options.

The character sets available depend on the --with-charset=charset_name and --with-extra-charsets=list-
of-charsets | complex | all | none options to configure, and the character set configuration files listed in
SHAREDIR/charsets/Index. See Typical configure Options.

If you change the character set when running MySQL, that may also change the sort order. Consequently, you must run myis-
amchk -r -q --set-collation=collation_name on all MyISAM tables, or your indexes may not be ordered cor-
rectly.

When a client connects to a MySQL server, the server indicates to the client what the server's default character set is. The client
switches to this character set for this connection.

You should use mysql_real_escape_string() when escaping strings for an SQL query.
mysql_real_escape_string() is identical to the old mysql_escape_string() function, except that it takes the
MYSQL connection handle as the first parameter so that the appropriate character set can be taken into account when escaping char-
acters.

If the client is compiled with paths that differ from where the server is installed and the user who configured MySQL didn't include
all character sets in the MySQL binary, you must tell the client where it can find the additional character sets it needs if the server
runs with a different character set from the client. You can do this by specifying a --character-sets-dir option to indicate
the path to the directory in which the dynamic MySQL character sets are stored. For example, you can put the following in an op-
tion file:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

You can force the client to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary, however.

2.1. Using the German Character Set
In MySQL 5.0, character set and collation are specified separately. This means that if you want German sort order, you should se-
lect the latin1 character set and either the latin1_german1_ci or latin1_german2_ci collation. For example, to start
the server with the latin1_german1_ci collation, use the --character-set-server=latin1 and -
-collation-server=latin1_german1_ci options.

For information on the differences between these two collations, see Section 1.12.2, “West European Character Sets”.

32

http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-extra-charsets
http://dev.mysql.com/doc/refman/5.0/en/select.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-charset
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-extra-charsets
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-extra-charsets
http://dev.mysql.com/doc/refman/5.0/en/configure-options.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-real-escape-string.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-real-escape-string.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-escape-string.html
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_collation-server


Chapter 3. Setting the Error Message Language
By default, mysqld produces error messages in English, but they can also be displayed in any of these other languages: Czech,
Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Norwegian-ny, Polish, Por-
tuguese, Romanian, Russian, Slovak, Spanish, or Swedish.

To start mysqld with a particular language for error messages, use the --language or -L option. The option value can be a lan-
guage name or the full path to the error message file. For example:

shell> mysqld --language=swedish

Or:

shell> mysqld --language=/usr/local/share/swedish

The language name should be specified in lowercase.

By default, the language files are located in the share/LANGUAGE directory under the MySQL base directory.

You can also change the content of the error messages produced by the server. Details can be found in the MySQL Internals manu-
al, available at http://forge.mysql.com/wiki/MySQL_Internals_Error_Messages. If you upgrade to a newer version of MySQL after
changing the error messages, remember to repeat your changes after the upgrade.

33

http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_language
http://forge.mysql.com/wiki/MySQL_Internals_Error_Messages


Chapter 4. Adding a New Character Set
This section discusses the procedure for adding a new character set to MySQL. You must have a MySQL source distribution to use
these instructions. The proper procedure depends on whether the character set is simple or complex:

• If the character set does not need to use special string collating routines for sorting and does not need multi-byte character sup-
port, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex character sets.

In the following instructions, MYSET represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the existing contents in the
file as a guide to adding new contents.

The <charset> element must list all the collations for the character set. These must include at least a binary collation and a
default collation. The default collation is usually named using a suffix of general_ci (general, case insensitive). It is pos-
sible for the binary collation to be the default collation, but usually they are different. The default collation should have a
primary flag. The binary collation should have a binary flag.

You must assign a unique ID number to each collation, chosen from the range 1 to 254. To find the maximum of the currently
used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple character set requires only a config-
uration file, whereas a complex character set requires C source file that defines collation functions, multi-byte functions, or
both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character set properties. Create this file
in the sql/share/charsets directory. (You can use a copy of latin1.xml as the basis for this file.) The syntax for the
file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array elements after that have 256
words. See Section 4.1, “The Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml must contain a
<collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and defines the support routines
necessary to properly perform operations on the character set:

a. Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c files (such as
ctype-big5.c) to see what needs to be defined. The arrays in your file must have names like ctype_MYSET,
to_lower_MYSET, and so on. These correspond to the arrays for a simple character set. See Section 4.1, “The Charac-
ter Definition Arrays”.

b. For each collation listed in the <charset> element for the character set in Index.xml, the ctype-MYSET.c file
must provide an implementation of the collation.

c. If you need string collating functions, see Section 4.2, “String Collating Support”.

d. If you need multi-byte character support, see Section 4.3, “Multi-Byte Character Support”.

3. Follow these steps to modify the configuration information. Use the existing configuration information as a guide to adding in-
formation for MYSYS. The example here assumes that the character set has default and binary collations, but more lines will
be needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

34



Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
add_compiled_collation(&my_charset_MYSET_general_ci);
add_compiled_collation(&my_charset_MYSET_bin);

#endif

b. If the character set uses ctype-MYSET.c, edit strings/Makefile.am and add ctype-MYSET.c to each defini-
tion of the CSRCS variable, and to the EXTRA_DIST variable.

c. If the character set uses ctype-MYSET.c, edit libmysql/Makefile.shared and add ctype-MYSET.lo to the
mystringsobjects definition.

d. Edit config/ac-macros/character_sets.m4:

i. Add MYSET to one of the define(CHARSETS_AVAILABLE...) lines in alphabetic order.

ii. Add MYSET to CHARSETS_COMPLEX. This is needed even for simple character sets, or configure will not re-
cognize --with-charset=MYSET.

iii. Add MYSET to the first case control structure. Omit the USE_MB and USE_MB_IDENT lines for 8-bit character
sets.

MYSET)
AC_DEFINE(HAVE_CHARSET_MYSET, 1, [Define to enable charset MYSET])
AC_DEFINE([USE_MB], 1, [Use multi-byte character routines])
AC_DEFINE(USE_MB_IDENT, 1)
;;

iv. Add MYSET to the second case control structure:

MYSET)
default_charset_default_collation="MYSET_general_ci"
default_charset_collations="MYSET_general_ci MYSET_bin"
;;

4. Reconfigure, recompile, and test.

4.1. The Character Definition Arrays
Each simple character set has a configuration file located in the sql/share/charsets directory. The file is named
MYSET.xml. It uses <map> array elements to list character set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character

• <lower> and <upper> list the lowercase and uppercase characters

• <unicode> maps 8-bit character values to Unicode values

• <collation> elements indicate character ordering for comparisons and sorts, one element per collation (binary collations
need no <map> element because the character codes themselves provide the ordering)

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory, there are corresponding arrays:
ctype_MYSET[], to_lower_MYSET[], and so forth. Not every complex character set has all of the arrays. See the existing
ctype-*.c files for examples. See the CHARSET_INFO.txt file in the strings directory for additional information.

The ctype array is indexed by character value + 1 and has 257 elements. This is an old legacy convention for handling EOF. The
other arrays are indexed by character value and have 256 elements.

ctype array elements are bit values. Each element describes the attributes of a single character in the character set. Each attribute

Adding a New Character Set

35

http://dev.mysql.com/doc/refman/5.0/en/configure-options.html#option_configure_with-charset


is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The ctype value for a given character should be the union of the applicable bitmask values that describe the character. For ex-
ample, 'A' is an uppercase character (_MY_U) as well as a hexadecimal digit (_MY_X), so its ctype value should be defined like
this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the ctype array in MYSET.xml should be written as
hexadecimal values.

The lower and upper arrays hold the lowercase and uppercase characters corresponding to each member of the character set. For
example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each collation array is a map indicating how characters should be ordered for comparison and sorting purposes. MySQL sorts
characters based on the values of this information. In some cases, this is the same as the upper array, which means that sorting is
case-insensitive. For more complicated sorting rules (for complex character sets), see the discussion of string collating in Sec-
tion 4.2, “String Collating Support”.

4.2. String Collating Support
For simple character sets, sorting rules are specified in the MYSET.xml configuration file using <map> array elements within
<collation> elements. If the sorting rules for your language are too complex to be handled with simple arrays, you need to
define string collating functions in the ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions are implemented. Look at
the ctype-*.c files in the strings directory, such as the files for the big5, czech, gbk, sjis, and tis160 character sets.
Take a look at the MY_COLLATION_HANDLER structures to see how they are used, and see the CHARSET_INFO.txt file in the
strings directory for additional information.

4.3. Multi-Byte Character Support
If you want to add support for a new character set that includes multi-byte characters, you need to use multi-byte character func-
tions in the ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions are implemented. Look at
the ctype-*.c files in the strings directory, such as the files for the euc_kr, gb2312, gbk, sjis, and ujis character
sets. Take a look at the MY_CHARSET_HANDLER structures to see how they are used, and see the CHARSET_INFO.txt file in
the strings directory for additional information.

Adding a New Character Set

36



Chapter 5. How to Add a New Collation to a Character Set
A collation is a set of rules that defines how to compare and sort character strings. Each collation in MySQL belongs to a single
character set. Every character set has at least one collation, and most have two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight. Characters with equal weights
compare as equal, and characters with unequal weights compare according to the relative magnitude of their weights.

MySQL supports several collation implementations, as discussed in Section 5.1, “Collation Implementation Types”. Some of these
can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets

• UCA-based collations for Unicode character sets

• Binary (xxx_bin) collations

The following discussion describes how to add collations of the first two types to existing character sets. All existing character sets
already have a binary collation, so there is no need here to describe how to add one.

Summary of the procedure for adding a new collation:

1. Choose a collation ID

2. Add configuration information that names the collation and describes the character-ordering rules

3. Restart the server

4. Verify that the collation is present

The instructions here cover only collations that can be added without recompiling MySQL. To add a collation that does require re-
compiling (as implemented by means of functions in a C source file), use the instructions in Chapter 4, Adding a New Character
Set. However, instead of adding all the information required for a complete character set, just modify the appropriate files for an
existing character set. That is, based on what is already present for the character set's current collations, add new data structures,
functions, and configuration information for the new collation. For an example, see the MySQL Blog article in the following list of
additional resources.

Additional resources

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

• MySQL University session “How to Add a Collation”: http://forge.mysql.com/wiki/How_to_Add_a_Collation

• MySQL Blog article “Instructions for adding a new Unicode collation”: ht-
tp://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/

5.1. Collation Implementation Types
MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from character codes to
weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the uppercase and lowercase versions of a
character have the same weights and they compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+

37

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/
http://forge.mysql.com/wiki/How_to_Add_a_Collation
http://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/
http://blogs.mysql.com/peterg/2008/05/19/instructions-for-adding-a-new-unicode-collation/


1 row in set (0.00 sec)

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order characters, as described in
Chapter 4, Adding a New Character Set.

Collations for non-Unicode multi-byte character sets

For this type of collation, 8-bit (single-byte) and multi-byte characters are handled differently. For 8-bit characters, character codes
map to weights in case-insensitive fashion. (For example, the single-byte characters 'a' and 'A' both have a weight of 0x41.)
For multi-byte characters, there are two types of relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The multi-byte character ' '
has a character code of 0x82C0, and the weight is also 0x82C0.

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight. gbk_chinese_ci is an ex-
ample of this kind of collation. The multi-byte character ' ' has a character code of 0x81B0 but a weight of 0xC286.

Collations for Unicode multi-byte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations are case insensitive and
accent insensitive. utf8_general_ci is an example: 'a', 'A', 'Ã#', and 'Ã¡' each have different character codes but all
have a weight of 0x0041 and compare as equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT 'a' = 'A', 'a' = 'Ã#', 'a' = 'Ã¡';
+-----------+-----------+-----------+
| 'a' = 'A' | 'a' = 'Ã#' | 'a' = 'Ã¡' |
+-----------+-----------+-----------+
| 1 | 1 | 1 |
+-----------+-----------+-----------+
1 row in set (0.06 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits)

• A character may have zero weights (or an empty weight). In this case, the character is ignorable. Example: "U+0000 NULL"
does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

• A character may have many weights. This is an expansion. Example: The German letter 'Ã#' (SZ LEAGUE, or SHARP S)
has a weight of 0x0FEA0FEA.

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech and has a weight of
0x0EE2.

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is not supported by MySQL.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

5.2. Choosing a Collation ID
Each collation must have a unique ID. To add a new collation, you must choose an ID value that is not currently used. The value
must be in the range from 1 to 254. The collation ID that you choose will show up in these contexts:

• The Id column of SHOW COLLATION output

• The ID column of the INFORMATION_SCHEMA.COLLATIONS table

• The charsetnr member of the MYSQL_FIELD C API data structure

How to Add a New Collation to a Character Set

38

http://dev.mysql.com/doc/refman/5.0/en/show-collation.html
http://dev.mysql.com/doc/refman/5.0/en/collations-table.html


• The number member of the MY_CHARSET_INFO data structure returned by the mysql_get_character_set_info()
C API function

To determine the largest currently used ID, issue the following statement:

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 210 |
+---------+

For the output just shown, you could choose an ID higher than 210 for the new collation.

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+

In this case, you can either choose an unused ID from within the current range of IDs, or choose an ID that is higher than the cur-
rent maximum ID. For example, in the output just shown, there are unused IDs between 53 and 57, and between 99 and 128. Or
you could choose an ID higher than 210.

Warning

If you upgrade MySQL, you may find that the collation ID you choose has been assigned to a collation included in the
new MySQL distribution. In this case, you will need to choose a new value for your own collation.

In addition, before upgrading, you should save the configuration files that you change. If you upgrade in place, the
process will replace the your modified files.

5.3. Adding a Simple Collation to an 8-Bit Character Set
To add a simple collation for an 8-bit character set without recompiling MySQL, use the following procedure. The example adds a
collation named latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 5.2, “Choosing a Collation ID”. The following steps use an ID of 56.

2. You will need to modify the Index.xml and latin1.xml configuration files. These files will be located in the directory
named by the character_sets_dir system variable. You can check the variable value as follows, although the path
name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+-----------------------------------------+
| Variable_name | Value |
+--------------------+-----------------------------------------+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+-----------------------------------------+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the character set to
which the collation is being added, and add a <collation> element that indicates the collation name and ID. For example:

<charset name="latin1">
...
<!-- associate collation name with its ID -->
<collation name="latin1_test_ci" id="56"/>
...

</charset>

How to Add a New Collation to a Character Set

39

http://dev.mysql.com/doc/refman/5.0/en/mysql-get-character-set-info.html
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_sets_dir


4. In the latin1.xml configuration file, add a <collation> element that names the collation and that contains a <map>
element that defines a character code-to-weight mapping table. Each word within the <map> element must be a number in
hexadecimal format.

<collation name="latin1_test_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'latin1_test_ci';
+----------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+----+---------+----------+---------+
| latin1_test_ci | latin1 | 56 | | | 1 |
+----------------+---------+----+---------+----------+---------+

5.4. Adding a UCA Collation to a Unicode Character Set
UCA collations for Unicode character sets can be added to MySQL without recompiling by using a subset of the Locale Data
Markup Language (LDML), which is available at http://www.unicode.org/reports/tr35/. In 5.0, this method of adding collations is
supported as of MySQL 5.0.46. With this method, you begin with an existing “base” collation. Then you describe the new collation
in terms of how it differs from the base collation, rather than defining the entire collation. The following table lists the base colla-
tions for the Unicode character sets.

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

The following brief summary describes the LDML characteristics required for understanding the procedure for adding a collation
given later in this section:

• LDML has reset rules and shift rules.

• Characters named in these rules can be written in \unnnn format, where nnnn is the hexadecimal Unicode code point value.
Basic Latin letters A-Z and a-z can also be written literally (this is a MySQL limitation; the LDML specification allows literal
non-Latin1 characters in the rules). Only characters in the Basic Multilingual Plane can be specified. This notation does not ap-
ply to characters outside the BMP range of 0000 to FFFF.

• A reset rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for subsequent shift rules to cause
them to be taken in relation to a given character. Either of the following rules resets subsequent shift rules to be taken in rela-
tion to the letter 'A':

<reset>A</reset>
<reset>\u0041</reset>

• Shift rules define primary, secondary, and tertiary differences of a character from another character. They are specified using
<p>, <s>, and <t> elements. Either of the following rules specifies a primary shift rule for the 'G' character:

<p>G</p>
<p>\u0047</p>

• Use primary differences to distinguish separate letters.

How to Add a New Collation to a Character Set

40

http://www.unicode.org/reports/tr35/


• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

To add a UCA collation for a Unicode character set without recompiling MySQL, use the following procedure. The example adds a
collation named utf8_phone_ci to the utf8 character set. The collation is designed for a scenario involving a Web application
for which users post their names and phone numbers. Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying allowable formats make searching for a specific phone
number very difficult. The solution is to define a new collation that reorders punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 5.2, “Choosing a Collation ID”. The following steps use an ID of 252.

2. You will need to modify the Index.xml configuration file. This file will be located in the directory named by the charac-
ter_sets_dir system variable. You can check the variable value as follows, although the path name might be different on
your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+-----------------------------------------+
| Variable_name | Value |
+--------------------+-----------------------------------------+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+-----------------------------------------+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide the collation ordering
rules. Find the <charset> element for the character set to which the collation is being added, and add a <collation>
element that indicates the collation name and ID. Within the <collation> element, provide a <rules> element contain-
ing the ordering rules:

<charset name="utf8">
...
<!-- associate collation name with its ID -->
<collation name="utf8_phone_ci" id="252">
<rules>
<reset>\u0000</reset>
<s>\u0020</s> <!-- space -->
<s>\u0028</s> <!-- left parenthesis -->
<s>\u0029</s> <!-- right parenthesis -->
<s>\u002B</s> <!-- plus -->
<s>\u002D</s> <!-- hyphen -->

</rules>
</collation>
...

</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements. For example, to define
ucs2_phone_ci, add a <collation> element to the <charset name="ucs2"> element. Remember that each colla-
tion must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'utf8_phone_ci';
+---------------+---------+-----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+-----+---------+----------+---------+
| utf8_phone_ci | utf8 | 252 | | | 8 |
+---------------+---------+-----+---------+----------+---------+

Now we can test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
-> name VARCHAR(64),
-> phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
-> );

Query OK, 0 rows affected (0.09 sec)
mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

How to Add a New Collation to a Character Set

41

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_sets_dir
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_sets_dir


mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for sorting and comparisons:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
| Sanja | +380 (912) 8008005 |
| Bar | +7-912-800-80-01 |
| Svoj | +7 912 800 80 02 |
| Ramil | (7912) 800 80 03 |
| Hf | +7 (912) 800 80 04 |
+-------+--------------------+
5 rows in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)
mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

How to Add a New Collation to a Character Set

42



Chapter 6. Problems With Character Sets
If you try to use a character set that is not compiled into your binary, you might run into the following problems:

• Your program uses an incorrect path to determine where the character sets are stored (which is typically the share/
mysql/charsets or share/charsets directory under the MySQL installation directory). This can be fixed by using the
--character-sets-dir option when you run the program in question. For example, to specify a directory to be used by
MySQL client programs, list it in the [client] group of your option file. The examples given here show what the setting
might look like for Unix or Windows, respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets
[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.0/share/charsets"

• The character set is a complex character set that cannot be loaded dynamically. In this case, you must recompile the program
with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation. See Section 5.4, “Adding a
UCA Collation to a Unicode Character Set”.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this case, you should install the
configuration file for the character set from a new MySQL distribution.

• If your character set index file does not contain the name for the character set, your program displays an error message. The file
is named Index.xml and the message is:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any missing character sets to the cur-
rent file.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -dvv tbl_name.

43



Chapter 7. MySQL Server Time Zone Support
The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host machine and uses it to set the
system_time_zone system variable. The value does not change thereafter.

You can set the system time zone for MySQL Server at startup with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld. The allowable values for
--timezone or TZ are system-dependent. Consult your operating system documentation to see what values are acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the server currently is operat-
ing in. The initial value for time_zone is 'SYSTEM', which indicates that the server time zone is the same as the system
time zone.

The initial global server time zone value can be specified explicitly at startup with the
--default-time-zone=timezone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by the session time_zone variable.
Initially, the session variable takes its value from the global time_zone variable, but the client can change its own time zone
with this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-sensitive. This includes the values dis-
played by functions such as NOW() or CURTIME(), and values stored in and retrieved from TIMESTAMP columns. Values for
TIMESTAMP columns are converted from the current time zone to UTC for storage, and from UTC to the current time zone for re-
trieval.

The current time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP() or values in DATE,
TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the time zone applies for them only when con-
verting from TIMESTAMP values. If you want locale-specific arithmetic for DATE, TIME, or DATETIME values, convert them to
UTC, perform the arithmetic, and then convert back.

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern', or 'MET'. Named time
zones can be used only if the time zone information tables in the mysql database have been created and populated.

The MySQL installation procedure creates the time zone tables in the mysql database, but does not load them. You must do so
manually using the following instructions. (If you are upgrading to MySQL 4.1.3 or later from an earlier version, you can create the
tables by upgrading your mysql database. Use the instructions in mysql_upgrade. After creating the tables, you can load
them.)

Note

Loading the time zone information is not necessarily a one-time operation because the information changes occasion-
ally. For example, the rules for Daylight Saving Time in the United States, Mexico, and parts of Canada changed in
2007. When such changes occur, applications that use the old rules become out of date and you may find it necessary
to reload the time zone tables to keep the information used by your MySQL server current. See the notes at the end of

44

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_system_time_zone
http://dev.mysql.com/doc/refman/5.0/en/mysqld-safe.html#option_mysqld_safe_timezone
http://dev.mysql.com/doc/refman/5.0/en/mysqld-safe.html#option_mysqld_safe_timezone
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_default-time-zone
http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_default-time-zone
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_curtime
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_utc-timestamp
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/time.html
http://dev.mysql.com/doc/refman/5.0/en/datetime.html
http://dev.mysql.com/doc/refman/5.0/en/mysql-tzinfo-to-sql.html#mysql-upgrade


this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use the
mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are Linux, FreeBSD, Sun Solaris,
and Mac OS X. One likely location for these files is the /usr/share/zoneinfo directory. If your system does not have a
zoneinfo database, you can use the downloadable package described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line, pass the zoneinfo directory
path name to mysql_tzinfo_to_sql and send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them. mysql processes those
statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke mysql_tzinfo_to_sql
like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named zone that the server needs
to know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this, where tz_file is the
name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use any previously
cached time zone data.

If your system is one that has no zoneinfo database (for example, Windows or HP-UX), you can use the package of pre-built time
zone tables that is available for download at the MySQL Developer Zone:

http://dev.mysql.com/downloads/timezones.html

This time zone package contains .frm, .MYD, and .MYI files for the MyISAM time zone tables. These tables should be part of the
mysql database, so you should place the files in the mysql subdirectory of your MySQL server's data directory. The server
should be stopped while you do this and restarted afterward.

Warning

Do not use the downloadable package if your system has a zoneinfo database. Use the mysql_tzinfo_to_sql
utility instead. Otherwise, you may cause a difference in datetime handling between MySQL and other applications on
your system.

For information about time zone settings in replication setup, please see Replication Features and Issues.

7.1. Staying Current with Time Zone Changes
As mentioned earlier, when the time zone rules change, applications that use the old rules become out of date. To stay current, it is
necessary to make sure that your system uses current time zone information is used. For MySQL, there are two factors to consider
in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set to SYSTEM. Make sure
that your operating system is using the latest time zone information. For most operating systems, the latest update or service
pack prepares your system for the time changes. Check the Web site for your operating system vendor for an update that ad-
dresses the time changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing from those in effect at
mysqld startup, you should restart mysqld so that it uses the updated rules. Otherwise, mysqld might not notice when the
system changes its time.

MySQL Server Time Zone Support

45

http://dev.mysql.com/downloads/timezones.html
http://dev.mysql.com/doc/refman/5.0/en/replication-features.html


• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database are up to date. If your
system has its own zoneinfo database, you should reload the MySQL time zone tables whenever the zoneinfo database is up-
dated, using the instructions given earlier in this section. For systems that do not have their own zoneinfo database, check the
MySQL Developer Zone for updates. When a new update is available, download it and use it to replace your current time zone
tables. mysqld caches time zone information that it looks up, so after replacing the time zone tables, you should restart
mysqld to make sure that it does not continue to serve outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone setting or by clients that set
their own time zone, check whether your time zone tables are empty. The following query determines whether the table that con-
tains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones, and you don't need to update
the tables. A count greater than zero indicates that the table is not empty and that its contents are available to be used for named
time zone support. In this case, you should be sure to reload your time zone tables so that anyone who uses named time zones will
get correct query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules, use a test like the one
following. The example uses values that are appropriate for the 2007 DST 1-hour change that occurs in the United States on March
11 at 2 a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time zones requires that the time
zone tables be used. The desired result is that both queries return the same result (the input time, converted to the equivalent value
in the 'US/Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+
mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 02:00:00 |
+------------------------------------------------------------+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+
mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+------------------------------------------------------------+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+------------------------------------------------------------+
| 2007-03-11 01:00:00 |
+------------------------------------------------------------+

7.2. Time Zone Leap Second Support
Before MySQL 5.0.74, if the operating system is configured to return leap seconds from OS time calls or if the MySQL server uses
a time zone definition that has leap seconds, functions such as NOW() could return a value having a time part that ends with
:59:60 or :59:61. If such values are inserted into a table, they would be dumped as is by mysqldump but considered invalid
when reloaded, leading to backup/restore problems.

As of MySQL 5.0.74, leap second values are returned with a time part that ends with :59:59. This means that a function such as
NOW() can return the same value for two or three consecutive seconds during the leap second. It remains true that literal temporal

MySQL Server Time Zone Support

46

http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_now
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_now


values having a time part that ends with :59:60 or :59:61 are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results may be obtained if you
use a comparison with 'YYYY-MM-DD hh:mm:ss' values:

mysql> CREATE TABLE t1 (a INT, ts TIMESTAMP DEFAULT NOW(), PRIMARY KEY (ts));
Query OK, 0 rows affected (0.11 sec)
mysql> # Simulate NOW() = '2009-01-01 02:59:59'
mysql> SET timestamp = 1230768022;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.07 sec)
mysql> # Simulate NOW() = '2009-01-01 02:59:60'
mysql> SET timestamp = 1230768023;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.02 sec)
mysql> SELECT * FROM t1;
+------+---------------------+
| a | ts |
+------+---------------------+
| 1 | 2008-12-31 18:00:22 |
| 2 | 2008-12-31 18:00:23 |
+------+---------------------+
2 rows in set (0.02 sec)
mysql> SELECT * FROM t1 WHERE ts = '2009-01-01 02:59:59';
Empty set (0.03 sec)

To work around this, you can use a comparison based on the UTC value actually stored in column, which has the leap second cor-
rection applied:

mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768023;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 18:00:23 |
+------+---------------------+
1 row in set (0.02 sec)

MySQL Server Time Zone Support

47

http://dev.mysql.com/doc/refman/5.0/en/datetime.html


Chapter 8. MySQL Server Locale Support
Beginning with MySQL 5.0.25, the locale indicated by the lc_time_names system variable controls the language used to dis-
play day and month names and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions.

Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your system's
locale setting, but you can set the value at server startup or set the GLOBAL value if you have the SUPER privilege. Any client can
examine the value of lc_time_names or set its SESSION value to affect the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| Friday Fri January Jan |
+-----------------------------------------+
1 row in set (0.00 sec)
mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)
mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)
mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+-----------------------------------------+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+-----------------------------------------+
| viernes vie enero ene |
+-----------------------------------------+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set indicated by the charac-
ter_set_connection system variable.

lc_time_names may be set to any of the following locale values.

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - Iran ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Catalan cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland

48

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lc_time_names
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_date-format
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_dayname
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_monthname
http://dev.mysql.com/doc/refman/5.0/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lc_time_names
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_character_set_connection
http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lc_time_names


de_DE: German - Germany de_LU: German - Luxembourg

EE: Estonian - Estonia en_AU: English - Australia

en_CA: English - Canada en_GB: English - United Kingdom

en_IN: English - India en_NZ: English - New Zealand

en_PH: English - Philippines en_US: English - United States

en_ZA: English - South Africa en_ZW: English - Zimbabwe

es_AR: Spanish - Argentina es_BO: Spanish - Bolivia

es_CL: Spanish - Chile es_CO: Spanish - Columbia

es_CR: Spanish - Costa Rica es_DO: Spanish - Dominican Republic

es_EC: Spanish - Ecuador es_ES: Spanish - Spain

es_GT: Spanish - Guatemala es_HN: Spanish - Honduras

es_MX: Spanish - Mexico es_NI: Spanish - Nicaragua

es_PA: Spanish - Panama es_PE: Spanish - Peru

es_PR: Spanish - Puerto Rico es_PY: Spanish - Paraguay

es_SV: Spanish - El Salvador es_US: Spanish - United States

es_UY: Spanish - Uruguay es_VE: Spanish - Venezuela

eu_ES: Basque - Basque fi_FI: Finnish - Finland

fo_FO: Faroese - Faroe Islands fr_BE: French - Belgium

fr_CA: French - Canada fr_CH: French - Switzerland

fr_FR: French - France fr_LU: French - Luxembourg

gl_ES: Galician - Galician gu_IN: Gujarati - India

he_IL: Hebrew - Israel hi_IN: Hindi - India

hr_HR: Croatian - Croatia hu_HU: Hungarian - Hungary

id_ID: Indonesian - Indonesia is_IS: Icelandic - Iceland

it_CH: Italian - Switzerland it_IT: Italian - Italy

ja_JP: Japanese - Japan ko_KR: Korean - Korea

lt_LT: Lithuanian - Lithuania lv_LV: Latvian - Latvia

mk_MK: Macedonian - FYROM mn_MN: Mongolia - Mongolian

ms_MY: Malay - Malaysia nb_NO: Norwegian(Bokml) - Norway

nl_BE: Dutch - Belgium nl_NL: Dutch - The Netherlands

no_NO: Norwegian - Norway pl_PL: Polish - Poland

pt_BR: Portugese - Brazil pt_PT: Portugese - Portugal

ro_RO: Romanian - Romania ru_RU: Russian - Russia

ru_UA: Russian - Ukraine sk_SK: Slovak - Slovakia

sl_SI: Slovenian - Slovenia sq_AL: Albanian - Albania

sr_YU: Serbian - Yugoslavia sv_FI: Swedish - Finland

sv_SE: Swedish - Sweden ta_IN: Tamil - India

te_IN: Telugu - India th_TH: Thai - Thailand

tr_TR: Turkish - Turkey uk_UA: Ukrainian - Ukraine

ur_PK: Urdu - Pakistan vi_VN: Vietnamese - Vietnam

zh_CN: Chinese - Peoples Republic of China zh_HK: Chinese - Hong Kong SAR

zh_TW: Chinese - Taiwan

lc_time_names currently does not affect the STR_TO_DATE() or GET_FORMAT() function.

MySQL Server Locale Support

49

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html#sysvar_lc_time_names
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_str-to-date
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html#function_get-format

	MySQL Internationalization and Localization
	Internationalization and Localization
	Chapter 1. Character Set Support
	1.1. Character Sets and Collations in General
	1.2. Character Sets and Collations in MySQL
	1.3. Specifying Character Sets and Collations
	1.3.1. Server Character Set and Collation
	1.3.2. Database Character Set and Collation
	1.3.3. Table Character Set and Collation
	1.3.4. Column Character Set and Collation
	1.3.5. Character String Literal Character Set and Collation
	1.3.6. National Character Set
	1.3.7. Examples of Character Set and Collation Assignment
	1.3.8. Compatibility with Other DBMSs

	1.4. Connection Character Sets and Collations
	1.5. Configuring the Character Set and Collation for Applications
	1.6. Collation Issues
	1.6.1. Using COLLATE in SQL Statements
	1.6.2. COLLATE Clause Precedence
	1.6.3. BINARY Operator
	1.6.4. The _bin and binary Collations
	1.6.5. Special Cases Where Collation Determination Is Tricky
	1.6.6. Collations Must Be for the Right Character Set
	1.6.7. Examples of the Effect of Collation

	1.7. String Repertoire
	1.8. Operations Affected by Character Set Support
	1.8.1. Result Strings
	1.8.2. CONVERT() and CAST()
	1.8.3. SHOW Statements and INFORMATION_SCHEMA

	1.9. Unicode Support
	1.10. UTF-8 for Metadata
	1.11. Column Character Set Conversion
	1.12. Character Sets and Collations That MySQL Supports
	1.12.1. Unicode Character Sets
	1.12.2. West European Character Sets
	1.12.3. Central European Character Sets
	1.12.4. South European and Middle East Character Sets
	1.12.5. Baltic Character Sets
	1.12.6. Cyrillic Character Sets
	1.12.7. Asian Character Sets
	1.12.7.1. The cp932 Character Set



	Chapter 2. The Character Set Used for Data and Sorting
	2.1. Using the German Character Set

	Chapter 3. Setting the Error Message Language
	Chapter 4. Adding a New Character Set
	4.1. The Character Definition Arrays
	4.2. String Collating Support
	4.3. Multi-Byte Character Support

	Chapter 5. How to Add a New Collation to a Character Set
	5.1. Collation Implementation Types
	5.2. Choosing a Collation ID
	5.3. Adding a Simple Collation to an 8-Bit Character Set
	5.4. Adding a UCA Collation to a Unicode Character Set

	Chapter 6. Problems With Character Sets
	Chapter 7. MySQL Server Time Zone Support
	7.1. Staying Current with Time Zone Changes
	7.2. Time Zone Leap Second Support

	Chapter 8. MySQL Server Locale Support

